If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16=36t-16t^2
We move all terms to the left:
16-(36t-16t^2)=0
We get rid of parentheses
16t^2-36t+16=0
a = 16; b = -36; c = +16;
Δ = b2-4ac
Δ = -362-4·16·16
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{17}}{2*16}=\frac{36-4\sqrt{17}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{17}}{2*16}=\frac{36+4\sqrt{17}}{32} $
| -31=s–20 | | 16=36t-16^2 | | 8x-3(2x-4)=15 | | (9-0.02x)^(1/2)=0 | | (6/x)+x=-5 | | 7/5t=12/25 | | (9-0.02x)^1/2=0 | | 8/3x=-8 | | 1.5(y-1.5)=-1.2(y-0.5) | | 3{6x+8}=24+18x | | 1.5(y-15)=-1.2(y-0.5) | | -30p-6(5-6p)=4(p-3)-10 | | 7x-22=6x+1 | | 4(3x-1)=3(3x+1) | | 3/4(r+4/9)=11/4 | | 5x+2x+1=180 | | 11x-51=92 | | 24-(3-5x)=2x+6 | | 9x=2140 | | b+2(27)=74 | | 2x=420 | | -9d–11=16 | | 4x=2140 | | -16t^2+263t+10=0 | | 29x=2140 | | 19=17+r/3 | | 6x=6(4-x) | | 8x+4-2x=5x+4 | | 16x=420 | | Y=2x+0.50 | | 7=q/4+4 | | 7z-18=9+10 |